Active Learning Active Subspace Differential Games Dynamic Programming Dynamical Systems Experimental Design Gaussian Process Regression Kalman Filtering Linear Temporal Logic Low-rank approximation Markov Decision Processes model reduction Motion Planning Multifidelity Methods Polynomial Approximation Regression Stochastic Optimal Control Support Vector Machines Surrogate models System Identification Tensor decompositions Tensor-train decomposition Uncertainty Quantification

## 2017 |

Gorodetsky, Alex; Karaman, Sertac; Marzouk, Youssef Low-rank tensor integration for Gaussian filtering of continuous time nonlinear systems Inproceedings 2017 IEEE 56th Annual Conference on Decision and Control (CDC), pp. 2789-2794, Melbourne, VIC, Australia, 2017, ISBN: 978-1-5090-2873-3. Abstract | Links | BibTeX | Tags: Dynamical Systems, Kalman Filtering, Tensor decompositions @inproceedings{Gorodetsky2017, title = {Low-rank tensor integration for Gaussian filtering of continuous time nonlinear systems}, author = {Alex Gorodetsky and Sertac Karaman and Youssef Marzouk}, url = {https://alexgorodetsky.com/wp-content/uploads/2018/02/main.pdf}, doi = {10.1109/CDC.2017.8264064}, isbn = {978-1-5090-2873-3}, year = {2017}, date = {2017-12-12}, booktitle = {2017 IEEE 56th Annual Conference on Decision and Control (CDC)}, pages = {2789-2794}, address = {Melbourne, VIC, Australia}, abstract = {Integration-based Gaussian filters such as un-scented, cubature, and Gauss-Hermite filters are effective ways to assimilate data and models within nonlinear systems. Traditionally, these filters have only been applicable for systems with a handful of states due to stability and scalability issues. In this paper, we present a new integration method for scaling quadrature-based filters to higher dimensions. Our approach begins by decomposing the dynamics and observation models into separated, low-rank tensor formats. Once in low-rank tensor format, adaptive integration techniques may be used to efficiently propagate the mean and covariance of the distribution of the system state with computational complexity that is polynomial in dimension and rank. Simulation results are shown on nonlinear chaotic systems with 20 state variables.}, keywords = {Dynamical Systems, Kalman Filtering, Tensor decompositions}, pubstate = {published}, tppubtype = {inproceedings} } Integration-based Gaussian filters such as un-scented, cubature, and Gauss-Hermite filters are effective ways to assimilate data and models within nonlinear systems. Traditionally, these filters have only been applicable for systems with a handful of states due to stability and scalability issues. In this paper, we present a new integration method for scaling quadrature-based filters to higher dimensions. Our approach begins by decomposing the dynamics and observation models into separated, low-rank tensor formats. Once in low-rank tensor format, adaptive integration techniques may be used to efficiently propagate the mean and covariance of the distribution of the system state with computational complexity that is polynomial in dimension and rank. Simulation results are shown on nonlinear chaotic systems with 20 state variables. |

Gorodetsky, Alex Massachusetts Institute of Technology, 2017. Abstract | Links | BibTeX | Tags: Dynamic Programming, Kalman Filtering, Stochastic Optimal Control, Surrogate models, Tensor decompositions @phdthesis{Gorodetsky2017b, title = {Continuous low-rank tensor decompositions, with applications to stochastic optimal control and data assimilation}, author = {Alex Gorodetsky}, url = {http://hdl.handle.net/1721.1/108918}, year = {2017}, date = {2017-02-02}, address = {Cambridge, MA}, school = {Massachusetts Institute of Technology}, abstract = {Optimal decision making under uncertainty is critical for control and optimization of complex systems. However, many techniques for solving problems such as stochastic optimal control and data assimilation encounter the curse of dimensionality when too many state variables are involved. In this thesis, we propose a framework for computing with high-dimensional functions that mitigates this exponential growth in complexity for problems with separable structure. Our framework tightly integrates two emerging areas: tensor decompositions and continuous computation. Tensor decompositions are able to effectively compress and operate with low-rank multidimensional arrays. Continuous computation is a paradigm for computing with functions instead of arrays, and it is best realized by Chebfun, a MATLAB package for computing with functions of up to three dimensions. Continuous computation provides a natural framework for building numerical algorithms that effectively, naturally, and automatically adapt to problem structure. The first part of this thesis describes a compressed continuous computation framework centered around a continuous analogue to the (discrete) tensor-train decomposition called the function-train decomposition. Computation with the function-train requires continuous matrix factorizations and continuous numerical linear algebra. Continuous analogues are presented for performing cross approximation; rounding; multilinear algebra operations such as addition, multiplication, integration, and differentiation; and continuous, rank-revealing, alternating least squares. Advantages of the function-train over the tensor-train include the ability to adaptively approximate functions and the ability to compute with functions that are parameterized differently. For example, while elementwise multiplication between tensors of different sizes is undefined, functions in FT format can be readily multiplied together. Next, we develop compressed versions of value iteration, policy iteration, and multilevel algorithms for solving dynamic programming problems arising in stochastic optimal control. These techniques enable computing global solutions to a broader set of problems, for example those with non-affine control inputs, than previously possible. Examples are presented for motion planning with robotic systems that have up to seven states. Finally, we use the FT to extend integration-based Gaussian filtering to larger state spaces than previously considered. Examples are presented for dynamical systems with up to twenty states.}, keywords = {Dynamic Programming, Kalman Filtering, Stochastic Optimal Control, Surrogate models, Tensor decompositions}, pubstate = {published}, tppubtype = {phdthesis} } Optimal decision making under uncertainty is critical for control and optimization of complex systems. However, many techniques for solving problems such as stochastic optimal control and data assimilation encounter the curse of dimensionality when too many state variables are involved. In this thesis, we propose a framework for computing with high-dimensional functions that mitigates this exponential growth in complexity for problems with separable structure. Our framework tightly integrates two emerging areas: tensor decompositions and continuous computation. Tensor decompositions are able to effectively compress and operate with low-rank multidimensional arrays. Continuous computation is a paradigm for computing with functions instead of arrays, and it is best realized by Chebfun, a MATLAB package for computing with functions of up to three dimensions. Continuous computation provides a natural framework for building numerical algorithms that effectively, naturally, and automatically adapt to problem structure. The first part of this thesis describes a compressed continuous computation framework centered around a continuous analogue to the (discrete) tensor-train decomposition called the function-train decomposition. Computation with the function-train requires continuous matrix factorizations and continuous numerical linear algebra. Continuous analogues are presented for performing cross approximation; rounding; multilinear algebra operations such as addition, multiplication, integration, and differentiation; and continuous, rank-revealing, alternating least squares. Advantages of the function-train over the tensor-train include the ability to adaptively approximate functions and the ability to compute with functions that are parameterized differently. For example, while elementwise multiplication between tensors of different sizes is undefined, functions in FT format can be readily multiplied together. Next, we develop compressed versions of value iteration, policy iteration, and multilevel algorithms for solving dynamic programming problems arising in stochastic optimal control. These techniques enable computing global solutions to a broader set of problems, for example those with non-affine control inputs, than previously possible. Examples are presented for motion planning with robotic systems that have up to seven states. Finally, we use the FT to extend integration-based Gaussian filtering to larger state spaces than previously considered. Examples are presented for dynamical systems with up to twenty states. |